• 3
  • 1
  • 6
  • 5
  • 6
  • 3
  • 4

“سید امین سید فخاری”

وب‌سایت:  http://math.ipm.ac.ir/fakhari/
پست الکترونیکی: 

سمت در پژوهشگاه

پژوهشگر غیر مقیم، (غیرمقیم) پژوهشکده ریاضیات
(1394 تا 1395
(till September 21, 2016))

سمت‌های پیشین در پژوهشگاه

پسا دکتری، پژوهشکده ریاضیات
(1392 تا 1394)

پژوهشگر دانشجو، پژوهشکده ریاضیات
(1390 تا 1391)



سمت‌های خارج از پژوهشگاه

Assistant Professor of University of Tehran

مقالات

1. S. A. Seyed Fakhari
On the Stanely depth and size of monomial ideals
Glasgow Math. J. (Accepted) [abstract]   
2. S. A. Seyed Fakhari (Joint with L. Katthan)
Two lower bounds for the Stanley depth of monomial ideals
Math. Nachr. (Accepted) [abstract]   
3. M. R. Pournaki, S. A. Seyed Fakhari and S. Yassemi
New classes of set-theoretic complete intersection monomial ideals
Comm. Algebra 43 (2015), 3920-3924  [abstract]   
4. M. R. Pournaki, S. A. Seyed Fakhari and S. Yassemi (Joint with A. Constantinescu and N. Terai)
Cohen-Macaulayness and limit behavior of depth for powers of cover ideals
Comm. Algebra 43 (2015), 143-157  [abstract]   
5. S. A. Seyed Fakhari and S. Yassemi (Joint with N. Altafi and N. Nemati)
Free resolution of powers of monomial ideals and Golod rings
Math. Scand. (Accepted) [abstract]   
6. S. A. Seyed Fakhari
Stanley depth and symbolic powers of monomial ideals
Math. Scand. (Accepted) [abstract]   
7. S. A. Seyed Fakhari and S. Yassemi (Joint with A. Mousivand)
A new construction for Cohen-Macaulay graphs
Comm. Algebra (Accepted) [abstract]   
8. M. R. Pournaki, S. A. Seyed Fakhari and S. Yassemi (Joint with N. Terai)
Simplicial complexes satisfying Serre's condition: a survey with some new results
J. Commut. Algebra 6 (2014), 455-483  [abstract]   
9. S. A. Seyed Fakhari
Stanley depth of weakly polymatroidal ideals
Archiv der Mathematik (Accepted) [abstract]   
10. S. A. Seyed Fakhari
Stanley depth of weakly polymatroidal ideals and squarefree monomial ideals
Illinois Journal of Mathematics (Accepted) [abstract]   
11. M. R. Pournaki, S. A. Seyed Fakhari and S. Yassemi
A generalization of the Swartz equality
Glasg. Math. J. 56 (2014), 381-386  [abstract]   
[Back]   
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo