• 1
  • 1
  • 2
  • 5
  • 6
  • 6
  • 3
  • 4
IPM
30
YEARS OLD

“School of Mathematics”

Back to Papers Home
Back to Papers of School of Mathematics

Paper   IPM / M / 7391
School of Mathematics
  Title:   A new version of Local-Global Principle for annihilations of local cohomology modules
  Author(s): 
1.  K. Khashyarmanesh
2.  M. Yassi
3.  A. Abbasi
  Status:   Published
  Journal: Colloq. Math.
  Vol.:  100
  Year:  2004
  Pages:   213-219
  Supported by:  IPM
  Abstract:
Let R be a commutative Noetherian ring. Let \fraka and \frakb be ideals of R and let N be a finitely generated R-module. We introduce a generalization of the \frakb-finiteness dimension of f\frakb\fraka(N) relative to \fraka in the context of generalized local cohomology modules as
f\frakb\fraka(M,N):inf{i ≥ 0| \frakb

 

(0:RHi\fraka(M,N))
 
},
M is an R-module. We also show that f\frakb\fraka(N) ≤ f\frakb\fraka(M,N) for any R-module M. This yields a new version of the Local-Global Principle for annihilation of local cohomology modules. Moreover, we obtain a generalization of the Faltings Lemma.

Download TeX format
back to top
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
scroll left or right