“School of Physic”

Back to Papers Home
Back to Papers of School of Physic

Paper   IPM / Physic / 16574
School of Physics
  Title:   Anisotropic ferroelectric distortion effects on the RKKY interaction in topological crystalline insulators
  Author(s): 
1.  H. Cheraghchi
2.  M. Yarmohammadi
  Status:   Published
  Journal: Scientific Reports
  Vol.:  11
  Year:  2021
  Pages:   5273
  Supported by:  IPM
  Abstract:
Manipulation of electronic and magnetic properties of topological materials is a topic of much interest in spintronic and valleytronic applications. Perturbation tuning of multiple Dirac cones on the (001) surface of topological crystalline insulators (TCIs) is also a related topic of growing interest. Here we show the numerical evidence for the ferroelectric structural distortion effects on the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic impurity moments on the SnTe (001) and related alloys. The mirror symmetry breaking between Dirac cones induced by the ferroelectric distortion could be divided into various possible configurations including the isotropically gapped, coexistence of gapless and gapped, and anisotropically gapped phases. Based on the retarded perturbed Green’s functions of the generalized gapped Dirac model, we numerically find the RKKY response for each phase. The distortion-induced symmetry breaking constitutes complex and interesting magnetic responses between magnetic moments compared to the pristine TCIs. In the specific case of coexisted gapless and gapped phases, a nontrivial behavior of the RKKY interaction is observed, which has not been seen in other Dirac materials up until now. For two impurities resided on the same sublattices, depending on the distortion strength, magnetic orders above of a critical impurity separation exhibit irregular ferromagnetic ⇔ antiferromagnetic phase transitions. However, independent of the impurity separation and distortion strength, no phase transition emerges for two impurities resided on different sublattices. This essential study sheds light on magnetic properties of Dirac materials with anisotropic mass terms and also makes TCIs applications relatively easy to understand.

Download TeX format
back to top
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
scroll left or right