• 1
  • 2
  • 5
  • 6
  • 7
  • 8
  • 9
  • 3
  • 4
IPM
30
YEARS OLD

“School of Mathematics”

Back to Papers Home
Back to Papers of School of Mathematics

Paper   IPM / M / 15179
School of Mathematics
  Title:   The Reich-Zaslavski property and fixed points of non-self multivalued mappings
  Author(s): 
1 . Alireza Amini-Harandi
2 . Majid Fakhar (Joint with M. Goli and H. R. Hajisharifi)
  Status:   Published
  Journal: J. Fixed Point Theory Appl.
  Year:  2018
  Pages:   DOI: 10.1007/s11784-018-0511-z
  Supported by:  IPM
  Abstract:
Let (X, d) be a metric space, Y be a nonempty subset of X, and let T : Y �?? P(X) be a non-self multivalued mapping. In this paper, by a new technique we study the fixed point theory of multivalued mappings under the assumption of the existence of a bounded sequence (xn)n in Y such that T nxn �?? Y, for each n �?? N. Our main result generalizes fixed point theorems due to Matkowski (Diss. Math. 127, 1975), W¸egrzyk (Diss. Math. (Rozprawy Mat.) 201, 1982), Reich and Zaslavski (Fixed Point Theory 8:303�??307, 2007), Petru¸sel et al. (SetValued Var. Anal. 23:223�??237, 2015) and provides a solution to the problems posed in Petru¸sel et al. (Set-Valued Var. Anal. 23:223�??237, 2015) and Rus and S¸erban (Miskolc Math. Notes 17:1021�??1031, 2016).


Download TeX format
back to top
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
scroll left or right