“School of Astronomy”

Back to Papers Home
Back to Papers of School of Astronomy

Paper   IPM / Astronomy / 13924
School of Astronomy
  Title:   Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy
  Author(s): 
1.  M. Tavakoli
2.  I. Cholis
3.  C. Evoli
4.  P. Ullio
  Status:   Published
  Journal: JCAP
  Vol.:  2014
  Year:  2014
  Pages:   34
  Supported by:  IPM
  Abstract:
Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towards different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light   10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.

Download TeX format
back to top
scroll left or right