Skip to main navigation Skip to Content

IPM

  • Director's Message
  • About IPM
  • The Constitution of IPM
  • Contact US
  • فارسي
  • Home
  • People
    • Administrative Board
    • Founding Fellows of IPM
    • Scientific Council of IPM
    • Academic Staff
  • Schools
    • Astronomy
    • Biological Sciences
    • Cognitive Sciences
    • Computer Science
    • Mathematics
    • Nano Science
    • Particles and Accelerators
    • Philosophy
    • Physics
  • Centers and Units
    • Brain Engineering Laboratory
    • Condensed Matter National Laboratory
    • Grid Computing Group
    • Iranian Light Source Facility
    • Iranian National Observatory
    • IRNIC
    • Library
    • Network Center
  • Publications
    • Akhbar
    • Papers
    • Books
    • Annual Report
  • Bulletin Board
  • Calendar
  • E - Catalog















Home
  • “ Schools ”

    IPM
    • Astronomy
    • Cognitive Sciences
    • Computer Science
    • Mathematics
    • Nano Science
    • Particles and Accelerators
    • Philosophy
    • Physics

    “ Centers and Units ”

    IPM
    • GCG Computing Group
    • Information Center
    • Iranian Light Source Facility
    • Iranian National Observatory
    • IRNIC
    • Library
    • Network Center

    “ Research Groups ”

    IPM
    • Bioinformatics
    • Combinatorics and Computing
    • Commutative Algebra
    • Logic
    • IPM HPC Laboratory

    “ Useful Links ”

    IPM
    • Gallery of Visitors
    • Contact Us
    • Gallery of Photos

    “ E-Services ”

    IPM
    • Webmail
    • Official Automation System
    • Library
    • Telephone Book
  • “School of Astronomy”

     
    Paper   IPM / Astronomy / 12529
       School of Astronomy
      Title: The Effect of Self-Gravity on the Equilibrium Structure of a Non-Rotating Thick Disk
      Author(s):
    1 . j. Ghanbari
    2 . s. Abbassi
    3 . s. Ataei
      Status: To Appear
      Journal: JDUBS
      Pages: 175-182
      Supported by: IPM
      Abstract:
    We investigate the effect of self-gravity on the equilibrium structure of a thick non-rotating disk around a central object by the self-similar method. We introduce three dimensionless variables Csg, Ct and Ck that indicate the relative importance of self-gravity, thermal energy and kinetic energy, respectively. We study the effect of each of them on the structure of the disk. Our selfsimilar solutions show that the self-gravity modifies the structure of the disk. We find out by increasing the ratio of disk mass to the central object mass, the disk becomes thinner. Our results show that increasing kinetic and thermal energies have similar effects on the structure of the disk and make it thicker.

    Download TeX format
    back to top
footer
  • -IPM
  • -20 Years
  • -INO
  • -ILSF
  • -GCG
  • -Iranet
  • -LIBRARY
  • -NIC
  • -BIO
  • -CCG
  • -Logic
prev next

Exploring IPM

  • People
    • Administrative Board
    • Senior Fellows of IPM
    • Scientific Council of IPM
    • Academic Staff
  • Schools
    • Astronomy
    • Biolgical Sciences
    • Cognitive Sciences
    • Computer Science
    • Mathematics
    • Nano Science
    • Particles and Accelerators
    • Philosophy
    • Physics
  • Centers
    • Brain Engineering Center
    • Condensed Matter National Laboratory
    • Deputy for Research
    • Grid Computing Group
    • Information Center
    • Iranian Light Source Facility
    • Iranian National Observatory
    • IRNIC
    • Library
    • Network Center
  • Groups
    • Bioinformatics
    • Combinatorics and Computing
    • Logic
    • Commutative Algebra
    • IPM HPC Laboratory
  • E-Services
    • Library Catalog
    • Official Automation System
    • Official Automation System (dabir)
    • Telephone Book
    • Webmail
  • Publications
    • Akhbar
    • Papers
    • Books

 COPYRIGHT 2012 © ALL RIGHTS RESERVED

Please submit your comments or questions here, or contact Webmaster  |  ipmic@ipm.ir