\documentclass[12pt]{article}
\usepackage{amsmath,amssymb,amsfonts}
\begin{document}
The quantum vacuum effects are investigated for a massive scalar field with general curvature coupling and obeying the Robin boundary conditions given on two concentric spherical shells with radii $a $ and $b$ in the $D+1$-dimensional global monopole background. The expressions are derived for the Wightman function, the vacuum expectation values of the field square, the vacuum energy density, radial and azimuthal stress components in the region between the shells. A regularization procedure is carried out by making use of the generalized Abel-Plana formula for the series over zeros of combinations of the cylinder functions. This formula allows us to extract from the vacuum expectation values the parts due to a single sphere on background of the global monopole gravitational field, and to present the "interference" parts in terms of exponentially convergent integrals, useful, in particular, for numerical evaluations. The vacuum forces acting on the boundaries are presented as a sum of the self--action and interaction terms. The first one contains well known surface divergences and needs a further regularization. The interaction forces between the spheres are finite for all values $a