\documentclass[12pt]{article}
\usepackage{amsmath,amssymb,amsfonts}
\begin{document}
We study holographically the zero and finite temperature behavior of the potential energy and holographic subregion complexity corresponding to a probe meson in a non-conformal model. Interestingly, in the specific regime of the model parameters, at zero and low temperatures, we find a nicely linear relation between dimensionless meson potential energy and dimensionless volume implying that the less bounded meson state needs less information to be specified and vice versa. But this behavior can not be confirmed in the high temperature limit. We also observe that the non-conformal corrections increase holographic subregion complexity in both zero and finite temperature. However, non-conformality has a decreasing effect on the dimensionless meson potential energy. We finally find that in the vicinity of the phase transition, the zero temperature meson state is more favourable than the finite temperature state, from the holographic subregion complexity point of view.
\end{document}