“School of Mathematics”
Back to Papers HomeBack to Papers of School of Mathematics
| Paper IPM / M / 16478 |
|
| Abstract: | |
|
It is well known that injective objects play a fundamental role in many branches of mathematics. The question whether a given category has enough injective objects has been investigated for many categories. Also, quasi-injective modules and acts have been
studied by many categorists. In this paper, we study quasi-injectivity in the category of actions of an ordered monoid on ordered sets (Pos-S) with respect to embeddings. Also,
we give the relation between injectivity, quasi-injectivity (with respect to embeddings), and poset completeness in the category Pos-S and some of its important subcategories.
Download TeX format |
|
| back to top | |


















