“Papers of School of Physics”
Pages:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
Isentropic Equation of State of Asymmetrical Nuclear Matter,
Nucl. Sci. J. 37(2000), 409-415 [abstract]
1512. H. Fakhri,
Another Bunch of Superpotentials in Terms of A Master Function,
Phys. Lett. A 265(2000), 20-27 [abstract]
1513. H. Fakhri and M.E. Bahadori,
Arbitrary-Order Parasupersymmetric Coherent States of Quantum Harmonic Oscillator,
J. Phys. A: Math. Gen. 33(2000), 7143-7148 [abstract]
1514. H. Fakhri,
Master Function Approach to Solution of Dirac Equation in (1+1)-Spacetime,
Indian J. Phys. B 74(2000), 291-295 [abstract]
1515. H. Fakhri,
Solution of the Dirac Equation on the Homogeneous Manifold SL(2,c)/GL(1,c) in The Presence of A Magnetic Monopole Field,
J. Phys. A: Math. Gen. 33(2000), 293-305 [abstract]
1516. A. Imaanpur,
On Supermembrane Actions on Calabi-Yau 3-Folds,
Phys. Lett. B 492(2000), 365-368 [abstract]
1517. M. Khorrami and K. Saaidi,
Nonlocal Two-Dimensional Yang-Mills and Generalized Yang-Mills Theories,
Int. J. Mod. Phys. A 15(2000), 4749-4759 [abstract]
1518. M.A. Jafarizadeh and S.J. Akhtarshenas,
Generalized Master Function Approach to One-Dimensional Quasiexactly Solvable Models,
J. Math. Phys. 41(2000), 7783-7796 [abstract]
1519. N. Naffari and R. Asgari,
Correlations in A Multisubband Quasi-One-Dimensional Electron Gas,
Phys. Rev. B 62(2000), 16001-16017 [abstract]
1520. A. Aghamohammadi and M. Khorrami,
Similarity Transformation in One-Dimensional Reaction-Diffusion Systems: The Voting Model as An Example,
J. Phys. A: Math. Gen. 33(2000), 7843-7855 [abstract]
back to top
Pages:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180