“Rosa Aghdam”

Email: 

IPM Positions

Senior Post-Doctoral Research Fellow, School of Biological Sciences
(2021 - Present )

Related Papers

1. R. Masumshah, R. Aghdam and C. Eslahchi
A neural network‑based method for polypharmacy side efects prediction
BMC Bioinformatics 22 (2021),   [abstract]
2. M. Habibi, G. Taheri and R. Aghdam
A SARS-CoV-2 (COVID-19) biological network to find targets for drug repurposing
Scientific Reports 11 (2021), 1-15  [abstract]
3. S. H. Mahmoodi, R. Aghdam and C. Eslahchi
An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests
Scientific Reports 11 (2021), 1-15  [abstract]
4. E. Saberi Ansari, Ch. Eslahchi, M. Rahimi, L. Geranpayeh, M. Ebrahimi, R. Aghdam and G. Kerdivel
Significant Random Signatures Reveals New Biomarker for Breast Cancer
BMC Medical Genomics 12 (2019), https://doi.org/10.1186/s12920-019-0609-1  [abstract]
5. R. Aghdam, V. Rezaei Tabar and H. Pezeshk
Some Node Ordering Methods for the K2 Algorithm
Computational Intelligence DOI: 10.1111/coin.12182 (2018), 1-17  [abstract]
6. R. Aghdam, T. Baghfalaki, P. Khosravi and E. Saberi Ansari
The Ability of Different Imputation Methods to Preserve the Significant Genes and Pathways in Cancer
Genomics, proteomics & bioinformatics 15 (2017), 396-404  [abstract]
7. R. Aghdam, P. Khosravi and E. Saberi Ansari
Comparative Analysis of Gene Regulatory Networks Concepts in Normal and Cancer Groups
Bioinformatics and Biocomputational Research (2016), 1  [abstract]
8. R. Aghdam. , M. Alijanpour. , M. Azadi. , A. Ebrahimi. , C. Eslahchi. and A. Rezvan.
Inferring Gene Regulatory Networks by PCA-CMI Using Hill Climbing Algorithm Based on MIT Score and SORDER Method
Int. J. Biomath. DOI: 10.1142/S1793524516500406 (2016), 18  [abstract]
9. R. Aghdam, M. Ganjali. , P. Niloofar. and C. Eslahchi.
Inferring gene regulatory networks by an order independent algorithm using incomplete data sets
J. Appl. Statist. DOI:10.1080/02664763.2015.1079307 (2016), 1-21  [abstract]
10. M. Habibi. , P. Khoda bakhshi. and R. Aghdam.
LRC: A new algorithm for prediction of conformational B-cell epitopes using statistical approach and clustering method
Journal of immunological methods doi:10.1016/j.jim.2015.09.006 (2015),   [abstract]
11. R. Aghdam. , M. Ganjali. , X. Zhang. and C. Eslahchi.
CN: A Consensus Algorithm for Inferring Gene Regulatory Networks Using SORDER Algorithm and Conditional Mutual Information Test
Molecular BioSystems DOI: 10.1039/C4MB00413B (2015), 942-949  [abstract]
12. R. Aghdam. , M. Ganjali. and C. Eslahchi.
A Hybrid Algorithm for Inferring Gene Regulatory Networks
Iranian Statistical Conference( In: )
[abstract]
13. R. Aghdam. , M. Alijanpour. , M. Azadi. , A. Ebrahimi. and C. Eslahchi.
Applying a Hybrid Method based on PC algorithm-based approach and MIT Score to Infer Gene Regulatory Networks
Iranian Conference on Bioinformatics (Accepted) [abstract]
14. R. Aghdam. , M. Ganjali. and C. Eslahchi.
IPCA-CMI: An algorithm for Inferring Gene Regulatory Networks Based on a Combination of PCA-CMI and MIT Score
Plos One 9 (2014), e92600  [abstract]
15. R. Aghdam. , H. Pezeshk. and M. Ganjali.
A New Method for Estimating parameters of A Profile Hidden Markov models Based on Phylogenetic tree
Iranian Statistical Conference (2012),   [abstract]
16. R. Aghdam. , H. Pezeshk. , S.A. Malekpour. , S. Shemehsavar. , M. Sadeghi. and C. Eslahchi.
A Clustering Approach for Estimating Parameters of a Profle Hidden Markov Model
International Journal of Data Mining and Bioinformatics 8 (2012), 66-82  [abstract]
17. A. Ebrahimi. , R. Aghdam. , N. Parisa. , M. ganjali. and C. Eslahchi.
An Algorithm for Inference of Gene Networks UsingBayesian Network
Emerging Trends in Computing and information Science 5 (2012), 774-782  [abstract]
18. R. Aghdam. , H. Pezeshk. , S.A. Malekpour. , S. Shemehsavar. , M. Sadeghi. and C. Eslahchi.
A Bidirectional Bayesian Monte Carlo Approach For Estimating Parameters Of A Profile Hidden Markov Model
Applied Science Segment 1 (2010),   [abstract]
[Back]   
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
scroll left or right