\documentclass[12pt]{article}
\usepackage{amsmath,amssymb,amsfonts}
\begin{document}
Based on the prime graph of a finite simple group, its
order is the product of its order components (see [4]). It is known that
Suzuki-Ree groups [6] and $PSL_2(q)$ [8] are uniquely
determined by their order components. In this paper, we prove that the
simple groups $F_4(q)$ are also
uniquely determined by their order components, where
$q=2^n(n>1)$.
\end{document}