“School of Biological Sciences”

Back to Papers Home
Back to Papers of School of Biological Sciences

Paper   IPM / Biological Sciences / 16680
School of Biological Sciences
  Title:   A computational method for drug sensitivity prediction of cancer cell lines based on various molecular information
  Author(s): 
1.  Fatemeh Ahmadi Moughari
2.  Changiz Eslahchi
  Status:   Published
  Journal: Plos One
  No.:  4
  Vol.:  16
  Year:  2021
  Supported by:  IPM
  Abstract:
Determining sensitive drugs for a patient is one of the most critical problems in precision medicine. Using genomic profiles of the tumor and drug information can help in tailoring the most efficient treatment for a patient. In this paper, we proposed a classification machine learning approach that predicts the sensitive/resistant drugs for a cell line. It can be performed by using both drug and cell line similarities, one of the cell line or drug similarities, or even not using any similarity information. This paper investigates the influence of using previously defined as well as two newly introduced similarities on predicting anti-cancer drug sensitivity. The proposed method uses max concentration thresholds for assigning drug responses to class labels. Its performance was evaluated using stratified five-fold cross-validation on cell line-drug pairs in two datasets. Assessing the predictive powers of the proposed model and three sets of methods, including state-of-the-art classification methods, state-of-the-art regression methods, and off-the-shelf classification machine learning approaches shows that the proposed method outperforms other methods. Moreover, The efficiency of the model is evaluated in tissue-specific conditions. Besides, the novel sensitive associations predicted by this model were verified by several supportive evidence in the literature and reliable database. Therefore, the proposed model can efficiently be used in predicting anti-cancer drug sensitivity. Material and implementation are available at https://github.com/fahmadimoughari/CDSML.


Download TeX format
back to top
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
scroll left or right