“School of Astronomy”

Back to Papers Home
Back to Papers of School of Astronomy

Paper   IPM / Astronomy / 13918
School of Astronomy
  Title:   Dust production from sub-solar to super-solar metallicity in Thermally Pulsing Asymptotic Giant Branch Stars
  Author(s): 
1.  A. Nanni
2.  A. Bressa
3.  P. Marigo
4.  L. Girard
5.  A. Javadi
6.  J. van Loon
  Status:   Published
  Journal: arXiv
  Year:  2014
  Pages:   5
  Supported by:  IPM
  Abstract:
We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models computed with the COLIBRI code, at varying initial mass and metallicity (Z=0.001, 0.008, 0.02, 0.04, 0.06). A relevant result of our analysis deals with the silicate production in M-stars. We show that, in order to reproduce the observed trend between terminal velocities and mass-loss rates in Galactic M-giants, one has to significantly reduce the efficiency of chemisputtering by H2 molecules, usually considered as the most effective dust destruction mechanism. This indication is also in agreement with the most recent laboratory results, which show that silicates may condense already at T=1400 K, instead than at Tcond=1000 K, as obtained by models that include chemisputtering. From the analysis of the total dust ejecta, we find that the total dust-to-gas ejecta of intermediate-mass stars are much less dependent on metallicity than usually assumed. In a broader context, our results are suitable to study the dust enrichment of the interstellar medium provided by TP-AGB stars in both nearby and high redshift galaxies.

Download TeX format
back to top
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
Clients Logo
scroll left or right