“School of Biological”
Back to Papers HomeBack to Papers of School of Biological
Paper IPM / Biological / 13214  


Abstract:  
Background
A phylogenetic network is a generalization of phylogenetic trees that allows the representation of conflicting signals or alternative evolutionary histories in a single diagram. There are several methods for constructing these networks. Some of these methods are based on distances among taxa. In practice, the methods which are based on distance perform faster in comparison with other methods. The NeighborNet (NNet) is a distancebased method. The NNet produces a circular ordering from a distance matrix, then constructs a collection of weighted splits using circular ordering. The SplitsTree which is a program using these weighted splits makes a phylogenetic network. In general, finding an optimal circular ordering is an NPhard problem. The NNet is a heuristic algorithm to find the optimal circular ordering which is based on neighborjoining algorithm.
Results
In this paper, we present a heuristic algorithm to find an optimal circular ordering based on the MonteCarlo method, called MCNet algorithm. In order to show that MCNet performs better than NNet, we apply both algorithms on different data sets. Then we draw phylogenetic networks corresponding to outputs of these algorithms using SplitsTree and compare the results.
Conclusions
We find that the circular ordering produced by the MCNet is closer to optimal circular ordering than the NNet. Furthermore, the networks corresponding to outputs of MCNet made by SplitsTree are simpler than NNet.
Download TeX format 

back to top 